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Open and closed strings from unstable D-branes
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The tachyon effective field theory describing the dynamics of a non-BRSbEane has electric flux tube
solutions where the electric field is at its critical value and the tachyon is at its vacuum. It has been suggested
that these solutions have the interpretation of fundamental strings. We show that in order that an electric flux
tube can “end” on a kink solution representing a BPS [p-(1)-brane, the electric flux must be embedded in
a tubular region inside which the tachyon is finite rather than at its vacuum where it is infinite. Energetic
considerations then force the transverse “area” of this tube to vanish. We suggest a possible interpretation of
the original electric flux tube solutions around the tachyon vacuum as well as of tachyon matter as system of
closed strings at a density far above the Hagedorn density.
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[. INTRODUCTION modes for describing the dynamics of light modes, is some-
what unclear here. The matter is only made worse by the fact
The study of various aspects of tachyon dynamics on ahat there are no physical states around the tachyon vacuum,
non-Bogomol'nyi-Prasad-SommerfielPS D-p-brane of and hence the usual method of deriving an effective
type IIA or IIB superstring theory has led to some under-action—by comparing th&matrix elements computed from
standing of the tachyon effective actifit—6] describing the  string theory with those computed from the effective
dynamics of these branes. The bosonic part of this effectivgction—does not work. Thus one might wonder in what
action, describing the dynamics of a tachyon field on a nonggnse Eq(1.1) describes the tachyon effective action on a
BPS Dp-brane of type IIA or 1IB superstring theory, is given non.BPS Dp-brane. This question was addressed and par-
by tially answered in a recent pagdi0]. As already emphasized
in this paper, the usefulness of an effective action can also be
judged by comparing the classical solution of the equations

S= f dP1xz,
of motion derived from the effective action with the classical

__ ey solutions in open string theory, which in turn are described
L= V(T) - deth, (4.1 by boundary conformal field theoriéBCFT). In this respect
where the tachyon effective action given in Ed..1) has had some
remarkable success. Among the string theory results repro-
AL=1,,%3,T9,T+d,Y'9,Y' +F,,, (1.2 duced by this effective action are the following.
_ 1) The effective action has a one-parameter family of time-
F=0,A,~0,A,. w3y @ P y

A, andY' for O=<pu,v<p, (p+1)<I=<9 are the gauge and

the transverse scalar fields on the world-volume of the non-

BPS brane, and is the tachyon fieldV(T) is the tachyon
potential which is symmetric und@r— — T, has a maximum

at T=0 where it is equal to the tensic'ﬁj, of the non-BPS
D-p-brane, and has its minimum af==*« where it
vanishes. We are wusing the convention wheng
=diag(—1,1, ...,1) and théundamental string tension has
been set equal to (2) " (i.e., o’ =1). Referencefs5,7—11]
suggest the choice

V(T) (1.9

_ p
coshT/+2)
Since the tachyon has a negative masthe order of the
string scale, the very notion of an effective action, which
normally refers to the result of integrating out the heavy
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dependent solutions describing the rolling of a spatially
homogeneous tachyon towards the vacuum=*oc. The
single parameter labeling the solution labels different
initial conditions on the tachyon field which cannot be
related by time translation. In full string theory, this one-
parameter family of solutions can be realized as appro-
priate marginal deformations of the BCFT describing the
original non-BPS Dp-brane[12,13. Furthermore, for
the choice ofV(T) given in Eq.(1.4), the time depen-
dence of the pressure, as calculated in BCFT, resembles
the result derived from the effective actif®]. However,

as mentioned i16,10,117, this resemblance is only at a
superficial level. This is most easily seen by examining
the energy density and pressure at the instant when the
tachyon is at rest. At this instant the field theory answers
for the energy density and pressures are equal in magni-
tude but differ by sign. No such simple relation exists for
the full stringy answer. This is not necessarily a contra-
diction, since during the initial stages of evolution the
second- and higher-derivative corrections to the action,
which are not included in Eq1.1), may be important.
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3

(4)

(5

(6)

Surprisingly however, in the limit where the tachyon be-  tachyon is at its vacuumT(=), the electric fieldE
gins rolling from the top of the potential, the effective takes its limiting valugE|=1, and the electric flux is

action (1.1)~(1.3 with potential (1.4) correctly repro- nonzero in some region of space. The spatially homoge-
duces the time evolution of the stress tenigi0]. The neous version of these solutions can be realized as ap-
agreement between the results derived from the effective propriate deformations of the BCFT describing the non-
field theory action(1.1)—(1.4) and the full tree level BPS Dp-brane with a background electric figlii4,15.
stringy results continue to hold even in the presence of & The |gcalized electric flux tube solutions mentioned in
uniform background electric fielfl4—16. item (6) above have been proposed as candidates for describ-
The effective action correctly gives the mass of thejng fundamental strings. Indeed, these solutions have many

tachyon on the non-BPS p-brane if we choos&(T)  properties in common with the fundamental string, including
as in Eq.(1.4). In the language of classical solutions, this the quantum numbers and dynamif33—35. However,
can be restated by saying that it correctly reproduces thghese solutions also suffer from the difficulty that the flux can
solution of the linearized equations of motion for the spread out in the transverse directions instead of being con-
tachyon(and the massless fieldaround theT=0 con-  fined into a narrow tubf33,34,39. This will correspond to a
figuration. new degree of freedom corresponding to fattening of the fun-
The effective action has a kink solution of zero width gamental string and is contrary to the known property of the
[17-23 representing a BPS Dp(-1)-brane[24-26.  fundamental string.
Furthermore, the world-volume action on the kink coin-  |n this paper we show that if an electric flux tube has one
cides with that on a BPS Dp(-1)-brane[22,27-29.  of its ends “attached” to a kink, then as we move a distance
(See also Refd30,31].) If we choose the potential as in x away from the kink along the flux tube, the tachyon cannot
Eq. (1.1), the tension of the kink also agrees with the jncrease faster thax2 This result, in turn, can be used to
tension of the D-p—1)-brane[9]. argue that the usual exchange interaction, expected of a fun-
If we compactify one of the directions on the original gamental string, is suppressed for these flux tubes. Hence we
D-p-brane on a circle of radiug, then at a critical radius  have another reason for not using these solutions to describe
R=\2, the BCFT describing the non-BPS Bbrane  a fundamental string. In order to overcome this problem, we
admits a marginal deformation which smoothly interpo-propose another class of solutions as candidates for funda-
lates between a non-BPS fpbrane and a BPS Dp(  mental strings based on the result[dD—43. These solu-
—1)-brane—B(p—1)-brane pair situated at diametri- tions have the right quantum numbers and dynamics as a
cally opposite points on the circ[@5]. It turns out that fundamental string, have the ability to end on a kink, and can
for the choice of potential given in E@l.4), the effec- also have the usual exchange interaction. The construction of
tive action(1.1)—(1.3) correctly reproduces this property these solutions requires creating a core where the tachyon
[9]. Namely, if we compactify one of the spacelike co- solution is away from its vacuum value and the electric flux
ordinates on a circle of radiug2, then the equations of is embedded in this core. Energetic considerations then force
motion admit a one-parametéa) family of solutions, this core to have zero “area” in the hyperplane transverse to
such that at one end of the parameter space@) we the flux. Consequently, the electric flux is also confined to a
have the configuratiom =0 representing the original region of zero volume. This property is consistent with that
non-BPS Dp-brane, while at the other end of the param- of the fundamental string, but this is only a partial success, as
eter spaced==>) we have a kink-antikink pair situated confinement of the flux within a region of zero volume does
at diametrically opposite points on the circle, representnot necessarily imply confinement to a one-dimensional sub-
ing a D-(p— 1)-brane—B(p— 1)-brane pair. space as would be required if it has to describe a fundamen-
If we consider an inhomogeneous time-dependent solutal string. We suggest a possible resolution of this puzzle
tion by choosing the initial conditioff = T,sinx, T=0 based on higher-derivative corrections on the D-brane world
and let the tachyon evolve according to the equations oyolume_. .
motion derived from the effective actidd.l), then the In this context we also rgcall that n sevgral recent papers
: . . : S ; precisely this type of configuration involving electric flux
solution hits a singularity after &nite time intervalat ? )
the pointsx=nr for integern [20]. One could ask if this has been considered from anqther V|ewpcﬁBﬂ,44,4_3. In
. . these papers the authors studied the process of inhomoge-
is also a feature of th_e _corre§por_1d|ng BCFT' Umcortu'neous tachyon condensation on an unstable D-brane in the
nately the BCFT describing this situation is not exactly yresence of an electric field and argued that at the end of the
solvable, but the corresponding problem fopEbranes  ondensation process the electric flux gets confined to re-
in bosonic string theory is exactly solvable and displaysyions inside which the tachyon is finite, rather than being
precisely the feature that the energy momentum tenso§pread out into the fat flux tube solutions described3u
blows up at isolated values afafter a finite time inter-  for which the tachyon is at its vacuum everywhere. Based on
val [32]. this analysis the authors argued that fundamental string solu-
The equations of motion derived from the effective ac-tions must be described by the former type of solu-
tion also admit electric flux tube solutions83—3§. tions. Although we arrive at these solutions from
These solutions are characterized by the fact that tha different point of view, our final conclusion agrees with

106003-2



OPEN AND CLOSED STRINGS FROM UNSTABLE D-BRANES PHYSICAL REVIEW 68, 106003 (2003

that of Refs[39,44,45. , 5S A

These results still leave open the question, what is the — II'= WZV(T)(A_l)X)V_detA.
physical interpretation of the original electric flux tube solu- o
tions of [33—3§ inside which the tachyon is at its vacuum
everywhere? A similar question can be asked about the P=——or
tachyon matter solution 0f12,13,5,20,21,32,46—61We 8(doY")
suggest a possible interpretation of these solutions as a sys-
tem of high-density closed string states. Our arguments rely
on the results 0f9,62] where the authors argued that during
the decay of a D-brane all the energy of the brane is con-
verted into closed strings. Naively one might expect that thisvhere the subscriptS and A denote the symmetric and an-
invalidates the open string analysis [f2,13. However, tisymmetric components of a matrix, respectively. Then the
since closed strings are automatically included in quantunidamiltonian is given by
open string theory, one could argue that the effect of emis-
sion of closed strings should be included in quantum open —
string theory and need not have to be included as a separate H =f dPxH(x),  H(X)=VK(x),
effect. Thus the closed string description of the D-brane de-
cay should be equivalent to the quantum open string descrip- f(x)=1I'TI'+ PP+ {111+ (H‘ﬂiY')(HjﬂjY')
tion rather than being a replacement of the latter. The results _ _ _
in quantum open string theory, in turn, should reduce to those + (I T) (AU T) + (F I+ ;' Py + 6 TILy)
in the classical_ open string theory in the weak string_ coupling X (FyI1%+ 3, YP,+ 8, TTI) + Vde(h),
limit. For consistency, this requires that the properties of the
system of closed strings produced in the decay of a D-brane
must agree with the results of classical open string theory in
the weak string coupling limit. We show that this is indeed
the case. This suggests that in the weak coupling limit th
classical tachyon matter described 2,13 gives a descrip-
tion of a system of closed strings at density of order: oI =0 2.3
i.e., far above the Hagedorn density. Generalizing this, we ' ' '

also propose that the electric flux tube solutions with the Around the minimum of the tachyon potentialat = the

electric field directed along a compact direction describes g,qqy contains solutions describing electric flux tubes. For
system of closed strings at high energy density and hig'éxample the configuration

density of fundamental string winding charge. This indicates
that in general the solutions in the classical open string M) =F(x2, ... xP), A(x)=x°, T=w, (2.4
theory (or tachyon effective field theonaround the tachyon A ' ’

vagugm wherer is Iarg'e everywhere Q'Ve an eﬁ§$t|ve de- with all other fields and their conjugate momenta set to zero,
scription of closed strings at a density of ordgr™. An can he shown to be a solution of the equations of motion and
interpretation of tachyon matter in a somewhat similar spirityescripes electric flux along thé direction. f(x2, . .. xP)
has been discussed independentlyaa. is an arbitrary positive semidefinite function of the coordi-
nates transverse to the direction of the flux. The total flux or
fundamental string charge associated with this configuration
Il. REVIEW OF KINK AND FLUX TUBE SOLUTIONS is given by

=V(T)(A"H279,Y'/—detA,

6S —1,\0v
M= 55y = VDA HE9, TV~ detA, @1

hij:5ij+Fij+ainanl+aiT&jT' (22)

The equations of motion derived from this Hamiltonian need
% be supplemented by the Gauss’ law constraint

We begin by reviewing the flux tube solutions of Refs.
[33-3@. These are most easily seen in the Hamiltonian for- ]::f dx2. - - dxPF(x2, ... xP). (2.5
malism given in[34]. We denote bylI' the momenta conju-
gate to the gauge field componets(1<i=<p), by P, the o ) _ ) )
momenta conjugate to the scalar fietd, and byI1T the  This is quantized in units of fundamental string charge. Tak-
momentum conjugate to the tachyon fidld ing f to be a delta function in these transverse coordinates

gives a stringlike configuration whose dynamics agrees with
that of the fundamental strin§34,35,38, but clearly the
We should note, however, that the explicit string theoretic analyfé€dom of choosing an arbitrafyshows that the flux can

sis based on boundary state has been carried out only in the contex'@ad out, unlike that of a fundamental string which has
of bosonic string theory39], since a perturbation describing inho- Z€ro width. _ . _
mogeneous rolling tachyon gives rise to a solvable BCFT only in As already stated, the equations of motion derived from
this casd32]. Thus these results are not directly applicable in thethe Hamiltonian2.2) also have a tachyon kink soluti¢fh7—
present context where we focus our attention on the superstring2]. It has the property that it has zero width and interpolates
theory. betweenT = —oo for x<0 to T=< for x>0. For describing
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electric flux in the presence of a kink, it is useful to take thewhere 7°= S/ 5(dpas) denotes the momenta conjugate to
kink as thea— limit of the configuration19] the gauge fields on the kink world volume and

T(xP)=aF(xP), (2.6)

whereF(x) satisfies Tp-1= fﬁmV(T)dT:U(O") (2.10

F(=x)=—F(x), F'(x)>0 for —b<x<b, ) . , . )
(=% (x) (x) X is the tension of the kink. Sincé(T) falls off exponentially

F'(xb)=0, F(x)=F(b) for x=b for large T, we see that the most of the contributionIis
’ ’ comes from the region whef xP—yP(£)] is of order 14:
F(X)=F(—b) for x=-b, (2.77  i.e., from regions of width~1/a.

Incidentally, Eqs.(2.9) can also be derived from an en-
b being a constant which can be taken to be as small as wergy minimization principle. Consider, for example, a flat
like after we have taken the-a limit. This solution has the BPS D-(p—1)-brane atx”=0, with a uniform electric flux
property thatd,T goes to zero outside the rangeb<xP ' along thex! direction. In the tachyon effective field
<b, but in the range-b<xP<b |4,,T| is infinite in thea  theory on a non-BPS @brane, we could try to represent
—oo limit, and T(xP) interpolates betweem(x?)=—« for  this by the tachyon background given in E@.6), with an
xP<0 andT(xP)=c for xP>0. xP-dependent electric fluki'(xP) along thex! direction. 7t

This description is slightly different from the one used in is related tolI*(xP) as

[22], but all the properties of the solution discussed2g]
remain valid with this new description. Leté
=&, ... & H=(" ... xP~1) denote the world-volume 7Tl=f dxPITH(xP). (211
coordinates on the kink. As was shown[22], the world-
volume theory on the kink is described precisely by the
Dirac-Born-Infeld (DBI) action involving massless scalar
fields y'(&) (p<i<9) and gauge fields, (&) [0<a<(p
—1)] under the identification

From Eq.(2.2) we now see that in thea— oo limit the energy
density associated with this configuration is given by

7y (é) £= f PV 2+ {V(@F (P)aF ()},
Ap(Xp,g):(ﬁ(Xp,f), Aa(xpig):aa(g)_qs(xp!g) aga 1 (212)
T(xP,&)=aF[xP—yP(£)], Y'(xP,&)=Y'(§), We want to find whatlI*(xP), subject to the constraint
(2.11, minimizes this energy density. For this we take the
for (p+1)<I=<9, (2.8  ansatz

where ¢(xP,€) is an arbitrary smooth function. In fact

A, (xP,§) [Y'(xP,£€)] can be taken to be any smooth vector
[scalat field whose pullback along the kink world volume
xP=yP(&) is equal toa, (&) [y'(£)]. Using these relations whereG is some function to be determined. Equati@nll)
one can show that now gives

ITY(xP)=G'(xP), (2.13

I, 6)=(T,0)~*aF [~ y*(9) G()—G( =) =, .14
XV{aF[xP=yP(§)]}m%(¢)

d
=(Tp-1) '7(&) S TP =yP(O 1},

On the other hand, Eq2.12 gives

ezf dxPV{G' (xP)}2+{V(aF(xP))aF’(xP)}.

1ss<s(p—1), (2.15
T
U(T)Ef V(y)dy, We now minimize Eq(2.15 with respect taG(xP), keeping
o the boundary values dB(xP) fixed. This gives
JyP
e, =100, 2 : G'(x") i
; PP\ (G ()P + (V@F(P)aF ()2
== (T (&) 7= UITDE -y ) ), (2.19

(2.9 Thus,
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G'(xP)=CV(aF(xP))aF'(xP), (2.1 infinite amount—as will be the case if the electric flux enters
the core of the kink from outside whelie= o—then it costs
where C is a constant. Integrating both sides ow# and  an infinite amount of energy. Put another way, the electric
using Egs(2.10, (2.14), we get flux tubes of the kind described in Eq2.4) are repelled by
ACT (218 the tachyon kink for|x|<b, since|VT| blows up in this
p—1- : range. Hence such flux tubes cannot “end” on a D-brane.
Equations(2.13, (2.17), (2.18 now give Note, however, f[hat this a_rg_ument only prevents the
tachyon from changing from a finite value o along a flux
Hl(xp)=(7;)_1)‘1aF’(xp)V(aF(xp))wl. (2.19 line within a finite distanceAn infinite-length flux tube can
have at one end a finif€ and at the other end infinifé. To
Equation (2.19 is a special casgyP(£)=0] of the more see how this is possible, let us take a flux line altay) the

general result given in Eq$2.9). x direction, carrying total electric fluxI, and letT(x) de-
note the tachyon profile along We shall take the tachyon to
1. NO GO THEOREM be large so that the term involving the tachyon potential can

) . o ) _ be ignored. Then the total integrated energy associated with
Since a kink solution in this theory is expected to describgne flux line is given by

a D-(p—1)-brane, we would expect that fundamental strings
should be able to end on this [p{ 1)-brane. Since the end 1

of the fundamental string carries electric charge under the f dX|H|\/1+(5xT)2<f dX|TI(x)|| 1+ 5(07{")2)-

U(1) gauge field residing on the Op 1)-brane, this will (3.4)

give rise to a gauge field background on the-(1)-brane.

AccorQing to Eqgs.(2.9) this implies_ that the electric flux op the right hand side of Eq3.4) the first termf dx|TI(x)|
associated with the fundamental string should be able to pers just the energy cost due to the fundamental string tension

: -1

etrate to the core of the kink wheRgxP—yP(&)]~a">and  which is always present. Thus the excess contribution to the
T=aF[x"—yP(£)] is finite. We shall now show that there gnergy due to the variation of along the flux line is
are strong constraints on finding electric flux tube solutiong,o,nded from above by

of this type.
We begin by noting that’(x) given in Eq.(2.2) is a sum 1
over a set of terms each of which is positive semidefinite. Ef dX|H|(r9XT)2. (3.5

This allows us to put a lower bound to the total energy as-

sociated with any configuration as follows: Now supposeT=T, at x=0 whereT, is some arbitrary

large but finite constant. If we take, e.d.to vary along the

E=H>f dPxy(IT'g;T) (I ;T =J dPx|I1'o;T| flux tube as

T(X)=To—a+a(l+x)? 3.6
:f dPx| 3, (1T T)]. (3. =To (1) (39
for some constantsr and 8 with 0<3<3, then T ap-
In the last step we have used the Gauss’ law const(aiBL proachese asx— . On the other hand, E¢3.5 shows that
Let us now evaluate the contribution to the right hand side ofhe total energy cost for this configuration is bounded from
Eqg. (3.1) from a narrow tube around an electric flux line, above by
with the walls of the tube being parallel to the flux line, and
the two endsA and B capped by disks of cross sectidir, 1, a?p?
anddog orthogonal to the flux lines. Lef, and Ty be the §|H| 1-283" 3.7
values of the tachyon field at the two ends dhdandIlg be

the magnitudes offi| at the two ends. Then, since there is This can be made as small as we like by takingufficiently
no leakage of flux through the wall of the tube, the Gausssmall. Thus we see that at little cost in energy, it is possible

law constraint(2.3) gives to have configurations where the tachyon grows slowly to-
wards infinity as we move along the flux line away from the
Hadop=1Ilgdog=dF, (3.2  plane of the kink. We can put a bound on how fast the

. tachyon can grow by requiring that the excess energy
wheredF denotes the total flux flowing along the tube. On

the other hand, evaluating the contribution to the right hand %
side of Eq.(3.1) from this tube we see that the total energy TS(’)(CeSSEJ dX|TI|[ V1+(8,T)2—1], (3.9
dE contained in this tube has a lower bound of the form

_ be finite. If T~x? for large x, then this gives a boung
=110 —1IIgT = Tao—Tg)|. . !
dE=[IaTadoa~HgTedog|=|dATa=Te)|. (3.3 <1 and the excess energy density behaves for |arge

This shows that if for a finite amount of flux flowing along a excess 242
tube the value of the tachyon along a flux line changes by an o0 X2, (3.9
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The results of this section hold also for a configurationarray of D-(p— 1)-brane—B(p—1)-brane pair$25].% If we
describing a flux tube passing through the kink rather tha'fakele/Z instead ok = 1/2, it is easy to see from E¢4.2)

ending on it, since in order to pass through the kink the flu e ; ; ;
must travel through a region inside which the tachyon i)s(that the energy density is concentrated in a region of width

finite. Since there are explicit classical solutions describing A~cog(mN), (4.4)

electric flux passing through a kink, both as exact classical

solutions in open string theoiffl4,15 and as classical solu- around the pointx=(2n+1)'n'/\/§_

tions in the tachyon effective field theof§6], we shall ex- Let us now consider switching on an electric fieldlong
amine these solutions in the next section and explicitly verifyine xP=x direction. In this casd«x cos&/\/2) is no longer

the various bounds derived in this section. a marginal deformation, b X cos(\/mzx/\/i) is [14].
The energy-momentum tensor associated with the deformed

IV. BOUNDARY CONFORMAL FIELD THEORY BCFT can be read out from the resultq d#,15 by a double
ANALYSIS Wick rotation and is given by

We shall now construct, using BCFT techniques, a peri-
odic array of kink-antikink pairs on a non-BPSkEbrane in
the presence of an electric field in direction transverse to the

1. ~
Too= E?;{ez(l— e?) Yy 1+cog2m\)]

kink world volume and show that the results are consistent +2(1-e)2f(J1-e*x)},

with the analysis of Sec. Ill. We begin by reviewing the case 1

without the electric field. This construction requires us to e PP Ny ~
switch on a tachyon field configuration of the forih Top 27;’(l &%) M1+ cog2mh)],
x\ cosf/\/2) [24,25, wherex denotes a particular direction

on the Dp-brane. For definiteness we shall take xP. The Tij=—(1-e)"*(J1-e%)d;

space-time energy-momentum tensor associated with this de-
formed BCFT can be obtained by examining the associated
boundary state and can in fact be read out using a Wick 1 5
rotation of the results ifi13]: IP= ETpe(l—ez)*l’z[lJrcos(ZTr)\)]. (4.5

for 1<i,js<(p—1),

5 1 5 HereIIP denotes the electric flux along thé& direction or,
Too=Tpf(X), Tpp=— 57;,[1+cos{27r)\)], equivalently, fundamental string charge.
If we keepe fixed and takex— 1/2 limit, then, as in the
previous caseJ gy acquires a delta-function contribution at
Tij= —%f(x)gn for 1<i,j<(p—1), (4.2 the points (2+ 1)77/\/2(1—e2). However, in this limit[IP
vanishes; thus there is no fundamental string charge left. If
we want to try to construct a configuration where there is a

where nonzero electric flux along the” direction and at the same
time take thex—1/2 limit, we must take the—1 limit
1 1 simultaneously, holding fixed the combination
f(x)

= ——+ 1
1+sirP(mwh)e 2 1+sird(mw\)e V& 1. Y ~
I1P= STp(1-¢?) J1+cog2m\)]

_ [1+sir?(a\)]co(mN) 2 ~T(1-€2) Y2co(mN). (4.6)
cod(mN)+2 sirf(wn)[1+cog\2x)] '

Analyzing Eq.(4.5 we see that in this limit the first term in
the expression foil, is equal to|IIP| and represents the
From this we see that as—1/2, f(x) vanishes everywhere contribution coming from the electric flux, whereas the sec-
except in the neighborhood af=(2n-+1)/y2 for integer ond term, involving the functiori(\1—e?x), goes as

n. A close examination shows that in the—1/2 limit Ty,

p
receives a delta-function contribution equal to TEXCOS=T o~ [IT,| = L& X=X ——
(I1P/7,) %+ 2x2 V2(1—¢€?)
4.7
Too=Tp- 12 S0P—(2n+1)w/\2), (4.3
n

2While the energy-momentum tensor does not distinguish a

_ ~ . . D-(p—1)-brane from a E(p—1)-brane, they can be distinguished
where 7,_,=\277, is the tension of a BPS  ayamining the expression for the Ramond-Ram@R) charge
D-(p—1)-brane. Thus at=1/2 the BCFT describes an density.

106003-6



OPEN AND CLOSED STRINGS FROM UNSTABLE D-BRANES PHYSICAL REVIEW 68, 106003 (2003

for finite . Thus the excess energy density over and abov@ction with potential1.4) correctly reproduce the tension of
that coming from the tension of the fundamental string is ndhe D-(p—1)-brane as a kink solution.

longer strictly localized ak=0. In particular, for largex,

TexcesStalls off as|TIP|/x?. This is perfectly consistent with
the results of Sec. lll and comparing Eg.9) with Eq. (4.7)
we see that the BCFT results are consistent with a logarith- The analysis of Sec. Il shows that for a flux tube ending

mic growth of the tachyon at large This can be taken to be ©n @ kink, the tachyon along the flux tube cannot increase
another piece of evidence that the tachyon effective actiof@ster thanx'’%, x being the distance away from the kink. The
given in Eqs(l]_)_(14) Correct|y reproduces the properties |nab|||ty of the taChyon to reach its vacuum vakgewithin a
of tree level open string theoty. finite distance affects one important property—that of ex-
In fact, if we work with the potentia(1.4), then we can change interactions of the type expected of a fundamental
explicitly reproduce this logarithmic growth in the effective String. Consider, for example, two segments of flux tubes,
field theory using the explicit solutions constructed#6]. ~APBandDPC, intersecting at a poirf. Let us further sup-
We can obtain these solutions from those[@) (Appendix ~ Pose thatAPB represents a segment of a flux tube at a dis-
B) by scaling thex coordinate by,/1—e? [14]. This gives a tanced; from a kink on which it ends an®PC represents a

periodic array of kink-antikink solutions in the presence ofsegment of a flux tube at a distandg from a different kink
an electric field 16]: on which it ends. Ifd; andd, are both large but different,

then the values of inside the segment®&PB and DPC will

V. SOLUTION REPRESENTING THE FUNDAMENTAL
STRING

5 ( X ) - also be large but different. Let us denote themThyandT,,
T=\2sinb Y asin y1-e>=||, X=x— ———, respectively.
V2 V2(1-¢?) Now consider the exchange process by which the system

(4.8)  described above gets converted to two new segmeRE
ndDPB. Fundamental strings are allowed to have such ex-
hanges. However, in this case, insidl®C and DPB, the

tachyon must jump fronT, to T, (or T, to T;) across the

point P. Since this costs energy, such processes will not be

o o 1o o 1o energetically favorable. Thus we see that even if we are able

[P="Tpe(1-e%) "(1+a%) ™ (4.9 to construct electric flux tube solutions for whigrgrows as

a power law along the flux tube, such solutions will be miss-

ing one important property of the fundamental string.

wherea is a parameter labeling the solution. The associate
value of ITP, computed using the method ¢14] on the
results of[ 9], is given by[16]

The limit we want to consider now is—1, a—o, keeping

fixed Using the insight gained from the analysis of Sec. IIl, we
- shall now explore the possibility of constructing a different
IIP=T,(1-e*) " . (4.10  type of stringlike solution which carries electric flux as is
) ] S required of a fundamental string, can end on the kink, and
Equation(4.8) now gives, in this limit 16], can also have exchange interactions of the kind described

above. In order that the string can end on a kink, the flux

lines inside the string must be able to smoothly match the
(4.19 electric flux lines inside a kink which flow radially outwards
from the point where the string ends. Since the lower bound
to the energy given in E3.1) is proportional to the com-

ponent of VT along the flux line, we can try to avoid this

1?).

T=2sinh 1| —= —2%
2 (ﬁ |11°|

This gives the correct logarithmic growth ®fat largex. The

associated value ofgy°®*S computed using the effective ) ,
field theory, is given by16] energy cost by making the flux lines follow a constant
' tachyon profile. If we follow this approach, then thé
2|11P) across a cross section of the fundamental string should be

Too “*=Too— |11y = (412 correlated withT in the same manner in whidd and T are
correlated inside a kink via E@2.9). Since inside a D-brane
most of the contribution to the electric flux comes from re-
gions whereT is finite, the same must be true for the funda-

h -k : hb h its of BCET ental string configurations. In other words, in order to em-
the well-known mismatch between the results o aN%hed a fundamental string solution in the tachyon vacuum, we

effective field theory6,10,11. Note, however, that both EGs. g6 4 create a region of finieand embed the electric flux

(4.7) and(4.12), after integration ovex, reproduce the ten- in this region. Since it costs energy to create a region of finite
sion of the D-p—1)-brane. This is a reflection of the fact T due to the nonzero value of the tachyon potential and the
that both the conformal field theory and the tachyon effectivejerivative of the tachyon, we must minimize the energy. This
requires the volume of this region to vanish. Thus unlike the
flux tube solution of Eq(2.4), these new configurations can-
3Note that if we chose to examirlg,, andIIP for finite x instead  not spread over a finitep(— 1)-volume transverse to the di-
of finite X, we shall get pure electric flux tube solutions[a#]. rection of the flux.

2(TIP/7,)2+%%

in qualitative agreement with the exact reqdlf7). The mis-
match between Eq$4.7) and(4.12 of course is the result of
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In fact an explicit construction of such a configurationand A, is any smooth vector field whose pullback on the
which can end on the kink is already available. These are thsurfacex?=A/{(p—3)rP 3% is equal toas, computed from
solutions given if40—43. In these papers it was shown that Egs. (5.1).% In this solution the fundamental string corre-
in the presence of a point electric charge source on @ D-( sponds to a tubular region with the wall of the tube having a
—1)-brane, the DBI action on the brane admits a solutiorthickness of order & Of course we need to take tre
which has the interpretation that the brane gets deformed inte-« limit in order to ensure that Eq€5.2) give a solution of
the form of a long hollow tube attached to the original branethe equations of motion derived from the Hamiltoni@m2).
like a spike, with the electric flux flowing along the wall of Analogous solutions in boundary string field theory have
the tube. In the world-volume theory on the P-{1)-brane  been considered earlier in R¢81].

the solution of Ref[40] takes the form This provides a description of the fundamental open string
that can end on a kink. As we go away from the plane of the
£s A1 p—1 kink, the radius of the tube decreases. Thus the description of
mS=+AT,_, . yP= o=\ / > s, a fundamental string far away from the kink is given as a
S p—3yp-3 s=1 rolled-up kink solution with infinitesimal radiu’. However,

(5.2 in describing the solution we need to take thes«, b
—0, andR—0 limit in this specific orde?.In order to see

whereA is a constant labeling the total amount of flux car- how the energetics work out, we can use the language of the
ried by the solution. The gauge fiel(£) associated with World-volume theory of the Dff—1)-brane. A straight fun-
this solution is determined from its equation of motion. Fromdamental string will then be described by a p-(1)-brane
this we see that as—0, yP—o; i.e., we move farther and Wworld volume of the formRx SP~2, with an electric field
farther away from the plane of the Op{1)-brane P along the direction oRR. If we assume for simplicity that the
=0). For smallr the D-(p—1)-brane looks likeR xSP~2  electric field is uniform and has magnitudand if VV denotes
and the radius oBP~2 decreases as we go away from thethe (p—2)-volume of S’~2, then the total flux is given by
plane of the original D4§— 1)-brane. When the constaits ~ 7,-1Ve/y1—e° and must be fixed if we are to describe a
adjusted so that the electric flux takes its minimum valuegiven number(say, 1 of fundamental strings. On the other
consistent with the quantization laws, the solution was giverhand, the energy per unit length aloRygfor this configura-
the interpretation of a fundamental string ending on apD-( tion is given by
—1)-brane, and its world-volume dynamics, quantum num- 5
bers and tension were shown to be consistent with this inter- E=Ty-1VIV1—e“. (5.3
pretation. Since all solutions of the DBI action on a BPS . - i .
D-(p—1)-brane can be lifted to a solution of the tachyonThus in order to get a minimum energy configuration for a

effective action on a non-BPS p-brane[22], we can now given fundame_ntal string ch_arge, we need to mif“”f“ze
translate the solution of the DBI theory into a solution in theV/ V1~ €, keepingVe/y1—e* fixed. This leads to the limit

tachyon effective field theory. Using Eg&.8), (2.9), and V=0, e—1, V1 e?—fixed. (5.4)
(5.1) we get
This description makes it clear thatithin this approxi-
A 1 mation as long as we take the Op(1)-brane to roll up in
aF( ) , the configuratiorR X SP~2, the fundamental open string has
zero width, since requiring the volume 8f~2 to be 0 im-
plies that its radius must go to zero. It is also easy to see
s ( A 1 ) following [34,35 that the world-volume dynamics of such a
aF’

string is described by the Nambu-Goto action. For this we

need to recall that the analysis 84,35 was carried out
under the assumption that tM&deth term in Egs.(2.2) can

) ) be ignored in the study of the dynamics of the flux tube, and

“4Note that since there is no magnetic flux on the kink world vol-

[P+ A2 1 aF’( A 1 ) ume, there is no topological obstruction to choosing such a smooth

[2p—4 xP— p—3p-3 vector field. We could simply choose &), which has the required

value on the world volume of the kink and goes to zero quickly as
1 we move away from the location of the kink.

xXV| aF| xP— ——¢ —) ) SThese solutions may also be considered as the zero-magnetic-

p—3yp-3 field limit of supertube$63]. However, supertubes themselves, car-
(&0 £~ 1) = (x° xP~1) rying ele_ctric.and magnetic flux, cannot be consider_ed as nonsingu-

Ty vy ’ lar solutions in the tachyon effective field theory, since due to the

p—1 p—1 presence of the magnetic flux on the kink world volume there is

r= z ESEs= z XX, (5.2 now a topological obstruction to continuing the gauge field

s=0 s=0 smoothly in the region inside the tube.
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this was sufficient to establish that the world-volume dynam->1. To this end note that the configuration that we are con-
ics of an infinitely thin flux tube is governed by the Nambu- sidering is far outside the domain of validity of the effective
Goto action without any higher-derivative corrections. Thusaction (1.1), and only the BPS nature of the configuration
all we need to show is that thédeth term in Eqs(2.2) can  can guarantee that the solution survives higher-derivative
be neglected for studying the dynamics of flux tubes associand quantum corrections. Requiring the configuration to be
ated with a rolled-up kink solution. Now, from EqR.9) we  BPS at the quantum level could certainly fix the shape of the
see that thelISII® term in Egs. (2.2 is of order transverse section.

(7,-1) ~%(aF'V)?7°7%. On the other hand, thé’deth term

in Eq5(22), which is dominated by the,T(?JT term in hlj , VI. CLOSED STRINGS AND DECAYING D-BRANES
goes asV?(aF’)2. Thus in the limit(5.4), in which 7
~e/\/1I—¢€? blows up, we have Given that the electric flux tube solution given in Egs.
(2.4) cannot be used to describe a single fundamental string,
TISTISs VV2deth. (5.5 one could ask what could be the possible physical interpre-

tation of these solutions. In this section we shall propose a

Thus we can ignore th¥2deth term in the analysis of the POSSible answer to this question. However, we begin our dis-
dynamics of the fundamental string. This, in turn, establishe§ussion by trying to find the physical interpretation of an-
that the dynamics is governed by the Nambu-Goto action. Other related system—the tachyon matter produced by a roll-

The above construction provides a description of the opefl'd tachyon at late timg12,13,5. Both the electric flux tube
string ending on a kink. Given this description of the funda-Solution a_nd the tachyon matFer are characterized by the fact
mental open string solution, fundamental closed strings caff'@t they involve a configuration where the tachyon remains
be described as closed loops of such rolled-up kink solutiondarge (near its vacuumeverywhere in space.

When two suchopen or closepstrings cross they can have Th'e rolling tachyon solution Qescrlbes the process of the
the usual interaction in which two segmet®B andDPC  classical decay of a brane-antibrane system or a non-BPS
of fundamental string, crossing at a poiRt can become D-brane. Classical analysis indicates that the _rollmg of the
another pair of segment&PC and DPB. This is possible tachyon on these systems produces at late time a state of
because the profiles of the tachyons across a cross section'#nZero energy density, concentrated on the plane of the
the tubes representingPB and DPC are identical, except original brane, and vanishing pressure. In parycular, for the
possibly a small difference in the radii of the tubes if theydecay of a non-BPS pbrane, the energy densigyand the
represent segments of open strings which are at differerfessureyj andp, along directions tangential and transverse
distances from the kinks on which they end. In contrast, if a0 the brane, respectively, have the form

segmentAPB of an electric flux tube in whose corE= o c 1

crosses a segmemPC of a rolled-up kink solution, then _ 2 0y_ “£/,0 v 0y _

they cannot have this type of exchange interaction, since the &= g oX), X = gf(x C)o0x, ), LX) =0,
would-be final configuration®PC and DPB will involve (6.9
electric flux traveling from thé =« vacuum to finitet re-

gion and are energetically unfavorable. This shows that it igvhereC is some constant labeling the initial condition on the
inconsistent to identify the closed strings as the electric fluxachyon field,g is the string couplingx, denote directions
tube solutions withT = core if we have identified the open transverse to the pbrane world volume, anf(x°,C) is a
strings as rolled-up kink solutions. function computed 112,13 which vanishes for large®.

Before concluding this section we would like to add a The natural question to ask now is, what is the physical
word of caution. In describing the fundamental string as anterpretation of this system? Naively, since there are no
rolled-up kink solution, we could in principle repla&~2  physical open string states around the tachyon vacuum, one
by another compactp(— 2)-dimensional spack, , whose  would expect that the D-brane should decay into a collection
volume vanishes, but which nevertheless has some dimewf closed strings. On the other hand, since closed strings
sions finite. An example of such a compact space could bappear in the open string loop expansi@#], one would
simply an elongated sphefellipsoid) of the formR?(x})?  expect that the effect of the emission of closed strings should
+(x%)%+ -+ (xP"12=R?, and we take the(R—0 limit.  already be contained in the quantum open string theory, and
The energetic considerations do not prevent us from havingne should not have to include the effect of closed string
such a configuration, and this will describe a configuration inemission as an additional contribution beyond what quantum
which the charge of a fundamental string aloxfyspreads open string theory gives us. Keeping this in view let us now
over thex! direction. This clearly violates the known prop- try to see how quantum open string theory will modify the
erty of the fundamental string. We believe the resolution ofclassical result$6.1) and then try to compare these with the
this puzzle must come from taking into account higher-expected answer that we get assuming that the unstable
derivative corrections and quantum corrections to the actiol-brane system decays to closed strings.

(1.1), since the situation that we are describing now is simply According to the Ehrenfest theorem, the classical evolu-

that of a rolled-up BPS Dg—1)-brane with electric flux, tion of the energy momentum tensor given in E¢.1)

and there must be an underlying mechanism that prevents tlehould reflect the evolution of the expectation value of the

brane from collapsing in a manner that allows us to spreagnergy-momentum tensor in the zero-coupling limit. In other

out a single unit of electric flux over a subspace of dimensiorwords, during the decay of a D-brane the quantum expecta-
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tion values of energy density and pressure should follow thishe energy density of the final state closed strings diverge in
classical answer in the weak coupling limit. However, for atheg— 0 limit, although the mean value is finite. Thus there

finite coupling quantum effects will modify these classicalis a large uncertainty in the energy of the emitted closed
results by modifying the effective action and, hence, modi-strings, and presumably, once quantum corrections are in-

fying the effective equations of motion. From general con-cluded, one would find that even a homogeneous configura-
siderations we should then expect the quantum-corrected rgpn decays to closed strings of energy of order.

sults for the evolution of, p, andp, to be of the form Since the closed strings produced during the decay of the
1 1 non-BPS [p-brane have velocity of ordeg'?, it takes a
E= _8()2l x%,g,C), p“(xo): —¢H(>Z¢ x%,g,C), time of orderg™ for these closed strings to carry energy
9 g away from the original location of the brane. This is per-

1 fectly consistent with Eq<6.2), (6.3). In particular a specific
p. (xX%==¢, (x,,x%9,0), (6.2  choice of &(x, ,x°g,C) which satisfies Eqgs.(6.3 is

g C[ 7/g9(x°%)?2]"2exd —x2/g(x%)?] wheren, is the number of
wheree and ¢ are functions which are in principle comput- ransverse dimensions. In this case for any fitﬁeas we
able by quantizing the theory in the rolling tachyon back-take theg—0 limit we shall see the energy density localized
ground. The precise form of the functionssand ¢ may on the plane of the original brane, whereas over a period of
depend on the choice of the “vacuum state” used for thisorderg™*? it disperses to a distance of order 1 in the trans-
computation since there is no natural choice of vacuum stateerse directions.
for the time-dependent background and we have many dif- In fact, the actual rate of dispersal of the energy away
ferent quantum states corresponding to the same classiciibm the plane of the brane may be even slower due to the

configuration. However, in thg—0 limit, we must have gravitational attraction that tends to pull the decay products
towards the plane of the brane. Since Newton’s constant is of
(X, ,x°,9,C)—~Ca(x,), ¢y(x, ,x%9,C)—f(x%a(x,),  orderg? for two objects of mass-g~* separated by a dis-
tance of order 1, the escape velocity is of ord&f. How-
¢>¢(>Z¢ x°,g,C)—0. (6.3 ever, since in the present case the decay products are initially

localized within a smaller distance from the plane of the

Let us now compute the expected contribution to thebrane, the escape velocity will be larger trgi?. Thus the
energy-momentum tensor associated with the closed strin%ﬁ'cay products, with a typical velocity of ordgt?, will not
to which the D-brane should decay and compare this witfPe able to escape to infinity and will be pulled back towards
Eqgs.(6.2), (6.3.° The computation of closed string emission the plane of the brane.
from unstable D-branes has been carried out in detail re- This argument shows that the massive decay products by
cently [9,62] where it was found that for P-branes forp ~ themselves cannot carry the energy away from the plane of
<2, the emission of closed strings from this backgroundth® brane. But one might expect that these very massive
extracts all the energy of the original brane into closed stringlosed strings will eventually decay into massless states
modes’ In particular, the final state for the decay of a non-Which carry energy away from the plane of the brane. Note,
BPS DO-branes is dominated by highly nonrelativistic closediowever, that due to the exponentially growing density of
strings of mass-g~! and velocity of ordeig¥2 Although  States at a high-mass level, a very massive string state will
for non-BPS Dp-branes forp=2 naive analysis involving decay predominantly to other very massive string states un-
homogeneous rolling tachyon tells us that only a small frac/€SS such decay processes are suppressed by exponentially
tion (of orderg) of the D-brane energy is radiated away into small matrix elements: As a result qf the presence of a large
closed strings, it was argued i8] that in the presence of any NuUmber of such massive closed strings near the plane of the
inhomogeneity, the decay of any [pbrane forp=1 can be _ongmal bran_e, these strmgs will colllde_ frequently, produc-
thought of as the result of the decay of a collection of noniNd (predominantly massive closed string states. Thus the
BPS DO-branes. Hence its final state will also be dominated@chyon matter, describing the decay product of a non-BPS
by highly nonrelativistic closed strings of massg~* and _D—brane, may be Ionggr Ilvgd tha_n one vyould nalvely expect
velocity of orderg'2 Even for a spatially homogeneous it to be. (Incidentally, it will be interesting to see if this

configuration, it was shown if62] that higher moments of argument can be sharpened to estimate the Iifetime of mas-
sive black holes represented by elementary string states

[65-70.)
80f course, since the closed string sector includes gravity, the Let us now turn to an analysis of the pressure. For a

definition of the stress tensor has the usual problem. However, sinc(‘eOIIeCtion of nonrelativistic particles, the ratio of the pressure

only a very small fraction of the energy goes into graviton states,t0 the energy density is proportional to the square of the

we could consider the contribution to the energy-momentum tensarVerage velocity of the particles. As mentioned in the previ-

from the nongravitational sector of the closed string. ous paragraph, for the closed strings produced in the decay
This analysis only deals with the closed string states created frorfRf Non-BPS D-branes this is of ordgr Thus, after all the

the vacuum by spacelike oscillators. There may also be interesting

information in the closed string states associated with timelike os-

cillators [50], but we shall ignore them in the present discussion. & would like to thank L. Rastelli for a discussion of this point.

106003-10



OPEN AND CLOSED STRINGS FROM UNSTABLE D-BRANES

PHYSICAL REVIEW 68, 106003 (2003

energy of the DO-brane has been converted to the closeeffectively fatten the D-brane. Since the total number of

string states, the pressure of the system will be of order unityspikes is proportional to the total flyfi|, this will easily
since the energy density is of ordgr . This agrees per- explain why the excess energy density away from the origi-

fectly with the result of Eqs(6.2), (6.3) which states that,
asymptotically, the order @/ contribution to the pressure
vanishes sincé(x%)—0 asx®—oc.

This suggests that the classical tachyon matter, produced

nal plane of the D4§— 1)-brane is proportional tﬁ:[|.

VIl. SUMMARY

during the decay of an unstable D-brane, may be the open We conclude the paper by summarizing the main results.

string description of a collection of highly nonrelativistic
closed strings of high density that is expected to be produce@)
in this decay. Given that closed strings appear at the open
string loop level, it may seem somewhat surprising that tree
level open string theory contains information about the prop-
erties of closed strings. However, this could be a reflection of
the fact that since there are no open string states around the
tachyon vacuum, even the classical open string theory must
know something about closed strings whose average prop-
erty it is supposed to reproduce in the weak coupling limit
[62]. This interpretation is consistent with the idea that quan-
tization of open string theory around the tachyon vacuum
should give rise to closed string thedryl—75.

One of the lessons we can learn from this interpretation is
that the classical results are quite unreliable when the energy
density of the system falls below the string density. In par-
ticular classical analysis tells us that the ratio of pressure to
energy density vanishes even at an energy density below tf‘(g
string scale, but this is not expected to happen in the quan-
tum theory since below the string density the system should
behave as ordinary radiation. From the general f@rh) we
see that this happens because in this case quantum correc-
tions, which are of order 1, could dominate the classical con-
tributions toT,, .

Let us now turn to the interpretation of the electric flux
tube solution of Sec. Il. For convenience let us compactify
the direction along which the electric flux points, so that the
fundamental string charge associated with the electric flux
has the simple interpretation of a fundamental string winding
number. In analogy with the rolling tachyon solution, we
should expect that the classical results will be a good ap-
proximation to the complete answers when the string cout3)
pling g is small, and the energy density and the winding
number density are of ordegr *. This is large for smalg). In
this case we could interpret the freedom of spreading out the
winding number simply to the possibility of distributing
these large numbers of fundamental strings arbitrarily in the
hyperplane transverse to the compact direction. The classical
dynamics of the tachyon effective field theory then describes
the time evolution of the expectation values of various physi-
cal quantities for such a system.

The analysis of Sec. IV shows that in the presence of such
an electric flux, a D4—1)-brane placed transverse to the

flux will fatten with a width of ordefIT|/7,,. We could ask if
there is a physical understanding of this fattening based on
our interpretation given above. It is tempting to suggest that
this fattening is caused by a large number of fundamental
strings ending on the Dp(— 1)-brane from both sides. Since
the fundamental string deforms the D-brane into the shape of

The tachyon effective field theory is known to contain
electric flux tube solutions for which the electric field is
at its critical value and the tachyon is at infinity. These
flux tubes have many properties in common with funda-
mental strings. We show that if such a flux tube “ends”
on a kink solution of the effective field theory represent-
ing a BPS D-p—1)-brane, then the tachyon cannot in-
crease faster thar'? as we move a distance away
from the plane of the kink along the flux tube. Thus the
flux tube approaches its asymptotic configuration, where
the tachyon is at its vacuum value very slowly. There

is no explicit classical solution known at present describ-
ing such configurations, but we have argued that even if
we are able to construct such solutions, they will be
missing out on one important property of the fundamen-
tal string—that of the exchange interaction.

) We propose an alternative form of the electric flux tube

solution for which the tachyon is finite in the region
which carries the electric flux. Energetic considerations
then force this region to have zero volume. While this is
an improvement over the electric flux tube solutions
mentioned in item(1), this constraint is not sufficiently
strong to confine the electric flux to a one-dimensional
subspace, as is required if it has to describe a single
fundamental string. We suggest that higher-derivative
and quantum corrections, which are expected to be sig-
nificant for these solutions, could be responsible for lo-
calizing the fundamental string charge to a one-
dimensional subspace.

A recent analysis of time-dependent solutions describing
the decay of a non-BPS D-brane has suggested that dur-
ing the decay process all the energy of the D-brane is
converted to closed strings. We suggest that this is an
alternative description of the phenomena that we see in
the analysis in open string theory and verify this by com-
paring the properties of the tachyon matter obtained in
the classical open string analysis with the properties of
the system of closed strings expected to be produced
during the decay process. This analysis suggests that
tachyon matter in effect describes a system of closed
strings at high energy density. In the same spirit, we also
suggest that the electric flux tube solutions described in
item (1) represent a system of closed strings at high en-
ergy density and high winding charge density.
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